La distribution chi-carré, La distribution de la fonction f, Référence – HP Calculateur graphique HP 50g Manuel d'utilisation
Page 161: Référence ,15-4

Page 15-4
La distribution chi-carré
La distribution chi-carré (
χ
2
) a un paramètre
ν, connu comme le degré de
liberté. La calculatrice recherche les valeurs de la partie supérieure
(cumulative) de la fonction de distribution pour la distribution
χ
2
-en utilisant
la fonction [UTPC], à partir de la valeur de x et du paramètre
ν. La
définition de cette fonction est donc UTPC(
ν,x) = P(X>x) = 1 - P(X<x). Par
exemple, UTPC(5, 2.5) = 0.776495…
La distribution de la fonction F
La distribution F dispose de deux paramètres
νN = numérateur degré de
liberté et
νD = dénominateur degré de liberté. La calculatrice recherche les
valeurs de la partie supérieure de la fonction de distribution (cumulative)
pour la distribution F, la fonction UTPF, à partir des paramètres
νN et νD,
et de la valeur de F. D’où la définition de cette fonction s’énonce comme
suit : UTPF(
νN,νD,F) = P(ℑ >F) = 1 - P(ℑ <F). Par exemple, calculez
UTPF(10,5, 2.5) = 0.1618347…
Référence
D’autres exemples de distribution de probabilité et d’application vous sont
présentés au Chapitre 17 du guide de l’utilisateur de la calculatrice.