4 nombre de chiffres et précision – Casio ClassPad 330 V.3.04 Manuel d'utilisation
Page 926

20060301
4 Nombre de chiffres et précision
I Nombre de chiffres
Mode standard
Les conditions suivantes s’appliquent lorsque la case « Decimal Calculation » dans la boîte
de dialogue du format de base n’est pas cochée.
• 611 chiffres au maximum sont sauvegardés dans la mémoire comme entiers.
• Des valeurs décimales de 15 chiffres au maximum sont converties en fraction et
sauvegardées dans la mémoire. S’il n’est pas possible de convertir une expression
mathématique en fraction, le résultat est affiché sous forme décimale.
• Les valeurs sauvegardées dans la mémoire sont affichées telles quelles, quels que soient
les réglages de [Number Format] (Normal 1, Normal 2, Fix 0 – 9, Sci 0 – 9) (sauf lorsqu’une
valeur décimale est affichée).
Mode décimal
Les conditions suivantes s’appliquent lorsque la case « Decimal Calculation » dans la boîte
de dialogue du format de base est cochée.
• Les valeurs enregistrées dans la mémoire de dernier résultat et les valeurs affectées aux
variables ont le nombre de chiffres spécifié pour les valeurs du mode standard.
• Les valeurs sont affichées selon les réglages de [Number Format] (Normal 1, Normal 2, Fix
0 – 9, Sci 0 – 9).
• Les valeurs affichées sont arrondies au nombre de décimales approprié.
• Certaines applications mémorisent les valeurs avec une mantisse de 15 chiffres et un
exposant de 3 chiffres.
I Précision
• Les calculs internes sont effectués avec 15 chiffres.
• L’erreur est de
p1 au 10
e
chiffre pour une seule expression mathématique (erreur de calcul
dans le mode décimal). Dans le cas de l’affichage exponentiel, l’erreur de calcul est de
p1 au chiffre le moins significatif. Notez que l’exécution de calculs consécutifs entraîne
un cumul d’erreurs. Il y a aussi cumul d’erreurs lors des calculs consécutifs internes de :
^(
x
y
),
x
,
x
!,
n
P
r
,
n
C
r
, etc.
• L’erreur est cumulative et tend à devenir plus importante aux alentours du ou des points
singuliers ou du ou des points d’inflexion d’une fonction, et aux alentours de zéro. Par
exemple, avec sinh(
x
) et tanh(
x
), le point d’inflexion se produit lorsque
x
= 0. Aux alentours
de ce point, il y cumul d’erreurs et la précision est faible.
A
-4-1
Nombre de chiffres et précision